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Executive Summary 

Wildfires represent a growing threat to ecosystems, infrastructure, and human life, a situation worsened by 

climate change and the expansion of human activity into fire-prone regions. This document presents the 

design and implementation of a data-driven Fire Detection, Prevention, and Response (FDPR) system, 

leveraging advanced analytics and intelligent algorithms to address this escalating challenge. 

The FDPR system processes a wide array of sensing and imaging data—collectively known as fire indices—

using a combination of rule-based logic and machine learning techniques to detect patterns and anomalies 

indicative of fire risk. These algorithms enable faster and more accurate decision-making, significantly 

reducing response times and enhancing fire mitigation efforts. 

Central to the system is Work Package 3 (WP3), which provides essential sensing data and image processing 

inputs. This data supports both real-time monitoring and probabilistic fire risk categorization, based on key 

environmental and human-related factors such as land cover, topography, and proximity to infrastructure. 

The result is a five-level fire risk index, from very low to very high, used to assess regional fire probability and 

prioritize areas for attention. 

This document details the framework, methodology, and operational vision of the FDPR system, laying the 

foundation for a scalable, intelligent, and proactive wildfire management solution. 
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1. Introduction  

Wildfires pose an increasingly severe threat to ecosystems, infrastructure, and human life, driven by climate 

change and expanding human settlements in vulnerable areas. To address this pressing challenge, this 

document outlines the development and implementation of advanced analytics algorithms for Fire Detection, 

Prevention, and Response (FDPR). These intelligent algorithms are designed to ingest and analyse a broad 

spectrum of sensing and imaging data, enabling a systematic, data-driven approach to wildfire detection and 

risk mitigation. 

At the core of the fire module is the capability to process diverse data inputs—referred to as fire indices—and 

to identify patterns and anomalies through rule-based detection and machine learning techniques. By 

uncovering emerging trends in the data, the algorithms will support more informed decision-making and 

significantly reduce reaction times to potential fire threats. These technologies are being developed with a 

strong focus on real-world applicability, closely aligned with the requirements and data types defined in Work 

Package 3 (WP3). 

WP3 serves as the foundational data source, providing critical sensing and image-processing inputs. This data 

will be used not only for real-time monitoring but also to categorize fire risk using probability-based models. 

The categorization will consider multiple environmental and anthropogenic parameters, including: 

• Land Cover: Biophysical characteristics such as vegetation type and density 

• Topography: Slope orientation (aspect) and elevation 

• Human Factors: Proximity to residential areas and road networks 

These factors will contribute to the formulation of a five-level fire risk index—ranging from very low to very 

high. The FDPR system will use this risk index to assess fire likelihood across different regions and identify 

probable fire locations. In the event of a fire detection, autonomous drones will be deployed for rapid, in-situ 

verification, serving as an early warning mechanism to support prevention efforts and reduce fire spread. 

Additionally, the FDPR algorithms will enhance coordination between first responders and emergency 

services. By evaluating current response strategies and offering data-informed recommendations, the system 

aims to streamline interventions and improve outcomes. The user will interact with the FDPR system via a 

unified user interface (UI), developed as part of WP3 (Tasks 3.3 and 3.4), accessible through a standardized 

API designed for seamless integration and usability. 

This document presents the framework, methodology, and envisioned implementation of the FDPR 

mechanism, setting the stage for a proactive and intelligent wildfire management solution. 
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2. Fire Prediction Module 

2.1 Introduction 

Accurate prediction of wildfire occurrence remains a complex and multifaceted challenge. The difficulty stems 

from the intricate interplay of environmental, meteorological, ecological, and human factors, all of which 

exhibit significant spatial and temporal variability. Wildfires are driven by a multitude of interdependent 

variables including vegetation type, fuel moisture, topography, and soil conditions. These factors interact in 

nonlinear ways, making it difficult to model fire risk accurately. Small changes in one parameter can have 

disproportionate effects, especially under extreme conditions. In addition, weather plays a critical role in fire 

ignition and propagation. Variables such as temperature, humidity, wind speed, and atmospheric stability are 

highly dynamic and can change rapidly. Despite advances in meteorological forecasting, uncertainties in short- 

and long-term weather predictions significantly affect the reliability of fire risk models. 

In this section we present the research performed to develop a fire prediction module based on weather data 

combined with the available fire history from 2010 until 2018. 

 

2.2 Current Fire Prediction Practices  

Modelling fire processes across multiple scales requires expertise in wildfire science. The combination of an 

ignition source and adequate conditions for the fire to spread leads to the probability of a fire (Oliveira et al., 

2012). The causes of forest fires are diverse, and their distribution varies from country to country and can also 

vary spatially and temporally within the same country (Ganteaume et al., 2013).  

The causative factors of wildfires often fall into two main categories: environmental and anthropogenic 

(Bountzouklis et al., 2022) or into four subcategories: topography, climate, vegetation, and human activity 

(Jaafari & Pourghasemi, 2019). Many factors are thought to influence wildfire activity, including weather 

conditions such as wind speed/direction, air temperature, relative humidity, solar radiation and rainfall 

(Benson et al., 2008), human activities like grazing, resin collection etc. (Palaiologou et al., 2020), land use 

change like land abandonment or tourism infrastructures (Butsic et al., 2015; Rasilla et al., 2010; Rego, 1992), 

fuel properties and climate as higher temperatures will result into drought of vegetation which will be more 

flammable (Dimitrakopoulos et al., 2011; Jolly et al., 2015).  

According to Bradstock and Boer et al. there are four major environmental factors which control the 

occurrence of large wildfires. These are (a) accumulation of fuel to levels that favor fire spread, (b) drying of 

the fuel to allow ignition and maintenance of combustion, (c) ignition sources (lightning, arson, etc.), (d) fire 

weather conditions that favor the spread of fire (Boer et al., 2017; Bradstock, 2010). Actually, in some 

ecosystems, we can have a significant impact on the frequency and degree of wildfires by fuel management 

with prescribed burning (Manjón-Cabeza et al., 2020; Morgan et al., 2020; Tambelini Tizianel et al., 2020), 

however this is not always a feasible or practical solution (Davim et al., 2021; Palaiologou et al., 2020). 
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In large terrains, especially in rugged terrains, there is often a lack of knowledge about the influence of the 

respective geological environment features, which can lead to reduced wildfire prediction accuracy. 

Therefore, determining the importance of geoecological factors is a recurring challenge in wildfire prediction 

(Jaafari & Pourghasemi, 2019). 

 
Figure 1: Factors influencing wildfire outcomes and management actions. 

 

Regarding environmental factors that cause wildfires, regional fire patterns associated with natural ignition 

sources are traditionally referred to as "natural fire regimes". Regarding environmental factors, weather, fuel, 

and topography are the main causes of forest fire outbreaks, especially in the Mediterranean region. Natural 

fire regimes are primarily caused by the interaction of climate, topography, local microenvironment, and land 

use land cover change (LULC). Human intervention can also influence these regimes. There is an extensive 

discussion of the main drivers of changes in fire management regimes, with a focus on LULC and climate 

(Ganteaume et al., 2013; Koutsias et al., 2013). Some studies have documented that certain types of land cover 

such as grasslands, are closely associated with fire, while other land covers (e.g. cropland and orchards) are 

negatively associated (Baeza et al., 2002; Kocher & Butsic, 2017). Agricultural activities, such as burning land 

to restore pasture, are known to start fires and spread them into nearby shrublands and forests. However, the 
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lack of ignitions is potentially associated with the presence of goats and sheep, most likely as a result of these 

animals' consumption of grass and bushes, which lowers the buildup of fine fuels (Romero-Calcerrada et al., 

2008).  

In the upcoming decades, vegetation, temperature, and fire dynamics may change because of land 

abandonment-related afforestation. The Mediterranean and Scandinavian countries in Europe have a larger 

chance of farmland abandonment in the near future because of continuing socioeconomic dynamics, so 

deforestation increases the frequency and severity of fire regimes (Terres et al., 2015; Ursino & Romano, 

2014).  

According to expert opinion and literature review, 15 adjustment factors for forest fire are slope degree, slope 

aspect, elevation, topographic wetness index (TWI), topographic position index (TPI), plan curvature, wind 

effect, annual temperature and rainfall, soil texture, distance to roads, rivers, and villages, normalized 

difference vegetation index (NDVI), and land use. The findings showed that factors related to land use, yearly 

rainfall, and proximity to highways were the primary causes of forest fires (Pourtaghi et al., 2016). 

Meteorological factors have a large impact on the occurrence and spread of fires in forests (Konca-Kędzierska 

& Pianko-Kluczyńska, 2018). Climate, meteorology, and environmental conditions cannot be ignored as they 

contribute to the occurrence, fire, and spread of accidental forest fires. For example, south-facing slopes 

within the forest provide ideal conditions for fires to occur due to high humidity and low soil moisture due to 

abundant sunlight (Kim et al., 2019). In the case of Iran, the factors that most influenced the occurrence of 

forest fires were precipitation and altitude (Jaafari & Pourghasemi, 2019). In Greece, analysis based on the 

period 1894–2010 revealed that while summer precipitation tended to drop and spring precipitation tended 

to increase the country's total annual precipitation showed a negative (albeit not statistically significant) long-

term trend. The reason for this could be that spring precipitation promotes biomass productivity and permits 

the accumulation of fine fuel, whereas summer precipitation decreases the likelihood of fires by increasing 

fuel moisture, which inhibits the spread of fires (Koutsias et al., 2013). Furthermore, in Greece, between 1961 

and 1997, there was a strong positive correlation between the prevalence of wildfires, the amount of land 

burned, and the drought. This could be explained by the length of time needed for the forest fuels to dry up 

and lose enough moisture content to ignite. The only factor influencing the frequency and severity of fires in 

Greece's Southern and Central districts—where there is the most fire activity—is the summer drought. The 

annual drought also becomes a deciding factor for the fire load in the more humid and less fire-prone areas 

of Northern and Western Greece (Dimitrakopoulos et al., 2011).  

Forest fuels can be broadly divided into two categories: living and dead (Yebra et al., 2013). The amount of 

water in a fuel is referred to as its Fuel Moisture Content (FMC), and it is typically expressed as a percentage. 

Additionally, there are two classifications for FMC: Dead FMC (DFMC) and Live FMC (LFMC). Forest fire 

behavior and occurrence are significantly influenced by both FMC groups (Chuvieco et al., 2004). However, it 



Green-HIT                      CODEVELOP-ICT-HEALTH/0322/0135 
 

WP6, D6.1, v2.0 	
Page 11 of 40	

is thought that DFMC has a bigger impact on fire behavior and vegetation flammability levels than LFMC 

(Jyoteeshkumar reddy et al., 2021). The primary reason for this is that dead fine fuels ignite more easily. The 

ignitability levels of the plants are thus significantly affected by changes in the moisture content of the fast-

responding dead fine fuels(Boer et al., 2017; Dimitrakopoulos & Bemmerzouk, 2003). In consideration of the 

aforementioned claims, the literature suggests that DFMC is a better method for determining the flammability 

levels of forested regions. The DFMC was predicted to be between 6 and 7% at the time of ignitions, suggesting 

a high risk for major wildfires (Giannaros et al., 2022). Interpolation techniques, which typically result in large 

computation errors, are used to estimate the DFMC. Remotely sensed (RS) data with a spatial resolution of 1 

km2 or finer could be employed as alternatives for the estimation of DFMC in order to get over this restriction. 

For the validation and subsequent estimation of DFMC from Automated Weather Stations (AWSs), it would be 

very beneficial to install new AWSs inside physical regions (forests, woodlands, etc.) (Dragozi et al., 2021). 

Although drought worsens fire conditions, wind speed is the environmental factor that most influences areas 

burned by wildfires. In addition to drying soil and surface moisture, wind also has the ability to start sparks 

and fires to produce new fuel. When the wind picks up, it adds oxygen to the flame, heating the fuel in its 

path. When heat, dryness, and wind occur together, fires can start and spread quickly (Dimitrakopoulos et al., 

2011; Naderpour et al., 2021).  

Next, an alternative causal inference approach to assessing the effects of top-down weather and bottom-up 

fuel precursors on wildfires is presented. The wildfire drivers are divided into two groups: (i) top-down group, 

including maximum air temperature (Tmax), vapor pressure deficit (VPD), potential evaporation (ET0), wind 

speed (Wind) and aridity anomaly index (AAI) (ii) bottom-up group, including the fraction of photosynthetically 

active radiation (FPAR), gross primary production (GPP), normalized difference vegetation index (NDVI), 

enhanced vegetation index (EVI), and soil water deficit index (SWDI).  

On wildfires, top-down dominance is more common than bottom-up dominance. In mid-latitudes, eastern 

Siberian boreal forests, and tropical rainforests, the top-down antecedents predominate. In savannahs in 

Australia and Africa, as well as in boreal forests in North America and Europe, the bottom-up predecessors 

predominate. This may be explained by the fact that high-intensity crown fires, which burn through more fuel, 

are more common in North American boreal forests, where fire-embracing black spruce forests predominate, 

whereas wildfires in eastern Siberia's fire-resistant species-dominated boreal forests tend to be low-intensity 

surface fires. In areas where bottom-up precursors predominate, seasonal or interannual forecasts are 

possible (Qu et al., 2023).  

Anticipating the position and timing of upcoming storms and strikes is also very crucial to anticipate the 

incidence of flames, as lightning is the second most prevalent source of wildfires, after human causes, or even 

the primary cause of ignition in some places with extremely low population densities (Jain et al., 2020). Long-

Continuing Currents (LCCs) are electrical currents in lightning that flow for more than a few tens of milliseconds 
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and have the potential to cause fires. Using meteorological factors as a proxy, LCC lightning occurrence over 

Europe may be parameterized in atmospheric models. Future research can use this parameterization to 

improve the modeling of fire occurrence (Pérez-Invernón et al., 2021, 2023). Although lightning-induced fires 

are not common in countries around the Mediterranean Basin and other Mediterranean regions, the moisture 

content of the fuel has a significant impact on the likelihood of ignition (Ganteaume et al., 2013).  

Climate change is another factor that should be considered; global LCC lightning flash rate has a rise of 41%. 

Wildfire regime changes are accelerating due to current global change. Changes in climate can lengthen the 

time that fuel is sufficiently dry to burn. The effects of an extended fire season on wildfire behavior are 

unknown. In fact, future fire seasons may be prolonged to the point that, in some areas, the fire may become 

active year-round (Duane et al., 2021; Pérez-Invernón et al., 2023).  

In most cases, when it comes to predict fire occurrence without the use of AI, the classic Fire Weather Index 

(FWI) (Van Wagner, 1987) is used to anticipate the fire threat for the following day, nevertheless this index 

ignores human factors and vegetation-related fire causes and only considers meteorological conditions. 

Although FWI system was originally developed for boreal ecosystems, it is broadly used (de Jong et al., 2016; 

Di Giuseppe et al., 2020). FWI collects meteorological variables (such as temperature, humidity, and wind 

speed) to create unique index risk information that has been shown to be able to explain annual variation in 

wildfires. However, evidence from global fires suggests a new situation in which an unprecedented 

combination of conditions could lead to extreme wildfire events (Duane et al., 2021).  

 

2.3 Fire Prediction using Artificial Intelligence 

More complex models have replaced statistical analysis methods as the primary means of predicting the risk 

of forest fires. It has been demonstrated that machine learning algorithms can produce more accurate fire 

forecast findings (Bar Massada et al., 2013; Mohajane et al., 2021; Ngoc Thach et al., 2018). 

While process-oriented global vegetation-fire models typically begin with a conceptual model, data-driven 

techniques seek to generate mathematical and computational models directly from the data. In data-driven 

approaches, a set of potential predictor variables is used to predict a response variable (here burned area, or 

fire counts) using machine learning algorithms, or evolutionary algorithms (e.g., genetic optimization). The 

significance of individual factors and the sensitivity of the response variable to the predictor variables enable 

the formation of a conceptual model of the system under study, provided that a sufficient data-driven model 

has been derived (Solomatine & Ostfeld, 2008). 

In the last fifteen years, machine learning (ML) techniques have effectively supplanted conventional field-

survey methods for predicting the susceptibility of forests to fires by clarifying the connection between past 

fire occurrences and various explanatory factors to forecast future fires (Jaafari et al., 2017). Although the 

complexity of wildfires often poses a modeling challenge, significant advances have been made in wildfire 
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monitoring and observation, primarily due to increased availability and capabilities of remote sensing 

technologies. Additionally, improvements in numerical weather forecasting and climate models may result in 

smaller spatial resolutions, longer forecast lead times, and improved predictability of extreme fire weather 

events. Such developments make data-centric approaches to wildfire modeling a natural progression for many 

research questions, given sufficient data. As a result, interest in the use of ML techniques in wildfire science 

and management has increased in recent years (Bauer et al., 2015; Jain et al., 2020). 

There are several issues and difficulties when using machine learning to predict the risk of fire. Complex 

interactions between fire causes that operate at many temporal and spatial scales and primarily interact 

nonlinearly are what create wildfires. The incidence of wildfires is inherently stochastic; the absence of a fire 

incident does not imply that there is no fire risk. Wildfires are physical processes that have a wide range of 

effects on both the environment and people. It is critical to understand what motivates the models' predictions 

to move beyond simple forecasting (Kondylatos et al., 2022). 

Due to the variety of fire causes, the assessment of fire risk is made considerably more difficult. Both human 

and environmental variables must be modeled to determine what causes a fire to ignite. The likelihood of 

forest fires is generally influenced by human activity, not just by climatic elements like precipitation, elevation, 

topographic moisture index, and kind of forest, but also by socioeconomic factors like population density and 

distance from an urban area. The spatial distribution of fire probability is increasingly concentrated in or 

around cities, and forest fire probability shows strong correlations with anthropogenic variables over time 

(Ganteaume et al., 2013; Kim et al., 2019). Arson, smoking, hunting, stubble burning, picnics, shepherd fires, 

and other activities have been found to be the primary causes of forest fires globally (Mhawej et al., 2017). 

However, spatial and temporal modeling of these factors has often been considered a challenge. Higher 

population concentrations (population density) and elevation of the forest may indicate the presence of more 

human activity. Variables connected to humans, such as land cover and the distance from residential areas 

and roadways, were found to have the greatest influence (Kim et al., 2019; Pham et al., 2020). Several authors 

have tried to link human land-use variables such as socioeconomic status and demographics with wildland fire 

activity. Spatially referenced variables can now be more easily included into these models because to the 

availability of Geographic Information Systems (GIS) technology (Vilar et al., 2010). 

The selection of a model for predicting the risk of forest fires is still up for debate. The diversity of training 

data from various regions has led to the identification of no single model or method that can capture fire 

behavior in all regions (Pham et al., 2020; Tan & Feng, 2023). 

The most used ML techniques in wildfires include Random Forests, MaxEnt, Artificial Neural Networks, 

Decision Trees, Support Vector Machines, and Genetic Algorithms, so the main methods have been studied 

(Bot & Borges, 2022; Jain et al., 2020). Each method has its own strengths and weaknesses. The choice of 

method depends mainly on the specific problem and data characteristics. Different models predict wildfire 
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probability and map wildfire danger zones differently. For instance, Deep Learning (DL) models use data to 

capture the nonlinear relationships between the environmental, meteorological, and human factors that 

cause fires. To evaluate the probability of fire outbreaks, fuel-related factors (NDVI, soil moisture, and relative 

humidity) should be used in conjunction with meteorological causes, as indicated by the correlations that arise 

from the DL models. The DL models create the physical reasoning behind the drivers of the forecasts 

(Kondylatos et al., 2022). 

One of the main advantages of using ML techniques in wildfire prediction instead of the traditional methods 

(e.g. FWI) is that there is model transferability, which means that we can adjust the contributing factors if 

needed, for example, predicting fire in a different area with different meteorological and environmental 

characteristics, or in case of climate change. Basic prerequisite to use ML algorithms, in general, is the 

existence of sufficient data of high quality. Another important issue worth mentioning is the selection bias. 

The performance of ML algorithms is affected when datasets are heavily imbalanced or in case where there 

are variables missing. Explainable Artificial Intelligence (xAI) techniques such as feature importance analysis 

can help us identify the most critical features for wildfire prediction, reducing the computational burden of 

training models on irrelevant or redundant features, plus we can comprehend the model’s decisions (Abdollahi 

& Pradhan, 2023). 

Over the last years, researchers have also focused on hybrid and ensemble models to achieve greater 

prediction accuracy; that is using ML, geospatial analysis, and remote sensing imagery to pinpoint regions at 

risk of wildfires (Bot & Borges, 2022; Tan & Feng, 2023). Regardless the way we approach wildfires forecasting, 

computational time required for the modelling process should always be one of our primary concerns (Bot & 

Borges, 2022). 

 

2.4 Data Pre-processing and Feature Engineering 

The initial data utilized in this study was sourced from the official European Union data portal, (Temperature 

and Relative Humidity — 08:00 and 13:00 — T.E.C. - Data Europa EU, n.d.). Exploratory Data Analysis (EDA) is 

a crucial preliminary step, intending to maximize our insight through patterns, anomalies and correlations 

before creating our model. The specific dataset consists of 10038 rows, 7 columns and contains data on 

temperature and relative humidity, recorded at the 5 following locations: 

• Paphos Airport 

• Larnaca Airport 

• Athalassa 

• Limassol (New Port) 

• Paralimni (Hospital) 
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In order to provide a comprehensive understanding of the environmental context within which the 

temperature and the relative humidity were collected, we present the locations of our sensors, indicated by 

red dots on the map (Figure 2), which shows the tree canopy height across the island. 

 
Figure 2: Tree canopy height. 

It is important to mention that the map informs us that the sensors are not located close to forests, but rather 

close to buildup areas and croplands. This suggests that human activity might have a greater impact on our 

predictions compared to environmental factors. Additionally, our sensors are not placed in high altitudes, 

ensuring that the recorded climatic data is representative of conditions at lower elevations. 
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The dataset includes daily information from 2010 to 2018. Specifically, data for stations (a), (b) and (c) start at 

1st of September 2010, whereas data for stations (d) and (e) start at 1st of October 2018. Our variables are 

mostly numerical (temperature and relative humidity), a datetime and a categorical (Location). For every day 

we have two sets of records (for 08:00 and 13:00 respectively), which means that we can check both times 

and compare which can give us a better prediction. Table 1 presents a slice of the dataframe that is used in 

the model. 

Table 1: Data slice of Weather dataset. 

 
 

Luckily there is no missing data, however there are some outliers. In column Temperature at 08:00 there are 

values of 121.4 °C and 58 °C which seem to be unrealistic. In these specific days there is no indication of fire, 

so it seems to be data errors. Other than these everything seems to be reasonable. 

There are only four features: Date, Location, Temperature and Relative Humidity, which is in conflict to what 

was mentioned earlier in literature review concerning the features we need to make a well based fire 

prediction – no data for land use and land cover, topography, precipitation, type of vegetation etc. 

Nevertheless, we will try to produce some worthwhile results. 

Our dataset is pretty imbalanced, meaning that there are more days that there was no fire in comparison to 

the days that a fire occurred. This needs to be kept in mind later on, when we are about to select our metric 

score. Specifically, the dataset contains 2103 incidents of fire occurrence out of total 10038.  

Feature selection is not an option in our case due to the lack of features, consequently, feature engineering 

seems to be unidirectional. Column Date shows a date but in a numeric format known as “serial number date”. 

Each integer represents the number of days since a specific base date – here 30th of December 1899. Apart 

from readability purposes, transforming dates to DDMMYYYY format is also preferred for creating 

visualizations and charts that suggest trends and patterns as we can create new columns based on month or 

day of the week. 

Figure 3 shows the distribution of fires over the period from 2010 until 2018. Furthermore, Figure 4 presents 

a detailed breakdown of wildfire occurrences by month, offering a clearer view of the seasonal dynamics of 

fire behaviour. The data reveals a pronounced concentration of fire events during the summer and early fall 

months, typically between May and October. This seasonal trend aligns with established wildfire behaviour 
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patterns, where extended periods of elevated temperatures, reduced precipitation, and low relative humidity 

contribute to drier vegetation and increased fuel flammability. Under such conditions, the likelihood of ignition 

and rapid fire spread is significantly heightened, emphasizing the critical role of climatic and environmental 

factors in influencing fire risk during this time of year. 

 
Figure 3: Fires over time. 

 



Green-HIT                      CODEVELOP-ICT-HEALTH/0322/0135 
 

WP6, D6.1, v2.0 	
Page 18 of 40	

 
Figure 4: Distribution of fires by month 

As shown in Table 1, the dataset has temperature and humidity readings for two times in the day, mainly 08:00 

in the morning and 13:00 in midday. Separating the dataset in two, one for each time of the day, we get pretty 

much the same information concerning feature correlation based on different time (Figure 5, Figure 6). 

 

 
Figure 5: Feature correlation at 08:00. 
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Figure 6: Feature correlation at 13:00. 

Naturally -from what we know from bibliography- temperature has a positive correlation with fire occurrences 

whereas relative humidity shows a moderate negative correlation suggesting that the higher the temperature 

and the lower the relative humidity the more likely for a fire outburst. Date and Location do not seem to affect 

fire incidents. The aforementioned claim is reinforced by the following distributions Figure 7 – extreme 

temperatures and humidity is not so common, and this explains why we don’t get so many fires when humidity 

is low and fire is high. 
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Figure 7: Temperature and Humidity distribution in case of fire 

 

Performing optimization in Logistic Regression (LR) and training our data we get same accuracy for both hours 

(Table 2). 

Table 2: Accuracy of Logistic regression. 

Dataset  Accuracy using LR  

08:00  0.7892  

13:00  0.7886  
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Likewise, using Extreme Gradient Boosting (XGB) we get similar results (Table 3). 

Table 3: Accuracy of XGBoost. 

Dataset  Accuracy using XGB  

08:00  0.7805  

13:00  0.7795  

 

Since there is no difference in results whether we use data at 08:00 or 13:00, we select data without outliers, 

that is data concerning 13:00. 

 

2.5 Model Selection 

Before selecting a ML model for predicting fire occurrences, our next step in preprocessing the data is to scale 

the temperature values. In this way we ensure that the values are scaled to a fixed range, likely to improve 

the model’s performance. In this case we will use Min-Max Scaling to transform the temperature values to a 

fixed range, between 0 and 1. Min – Max scaling is sensitive to outliers but the dataset we have has no outliers 

(minimum temperature is 2.2 °C and the maximum is 44.4 °C). We choose Min - Max scaling because our data 

distribution is non-Gaussian. Standardization is not used because it is more suitable for normally distributed 

data. 

 
Scaling will be applied after splitting the data into train and test sets, so that we prevent data leakage – which 

means information from the test set affects the training process. Table 4 presents a slice of the final dataframe. 
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Table 4: Scaled dataframe. 

DATE  LOCATION  TEMPERAT

URE  

REL.  

HUMID.  

MONTH  DAY  FIRE  

2010-01-01  1  0.4431279

6208530  

0.71  1  4  0  

2010-01-02  1  0.4668246

4454976  

0.7  1  5  0  

2010-01-03  1  0.4075829

3838862  

0.62  1  6  0  

2010-01-04  1  0.4028436

0189573  

0.67  1  0  0  

2010-01-05  1  0.3791469

1943127  

0.59  1  1  0  

 

Extreme Gradient Boosting (XGBoost) is a popular ML algorithm because of its efficiency and performance in 

both classification and regression tasks. It is designed to use parallel and distributed computing to improve 

the speed of computation and handle large-scale data. XGBoost builds an ensemble of decision trees in a 

sequential manner, where each tree aims to correct the errors of its predecessor. Gradient boosting involves 

training multiple weak learners in sequence. Each subsequent model focuses on the residual errors made by 

the previous models, reducing the overall error iteratively. XGBoost uses a technique called tree pruning to 

remove branches that do not contribute significantly to the model’s performance, which improves 

computational performance. It also includes regularization terms -both Lasso (L1) and Ridge (L2), to prevent 

overfitting. XGBoost is commonly used for fire prediction because of its high accuracy and efficiency in 

handling large datasets.  

When dealing with time series data or data involving dates in general, there are certain features which exhibit 

periodic behaviour. For instance, days of the week, days of the month, and moths of the year are cyclical. 

Traditional numerical representation of these features may mislead ML models since they don’t capture this 

cyclical nature. For example, January and December represented numerically as 1 and 12, however they are 

consecutive. To handle this, we will transform the aforementioned features by using sine and cosine functions, 

which represent cyclical data. In this way we ensure that the cyclical relationship is preserved. Following we 

see the formulas we use to make the transformations. 
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In the previous step, LR and XGB models have already been used, however we can run a series of quick tests 

with different models so we can narrow our choices to select our final model. Data exploration has shown that 

we have an imbalanced dataset – as non-fire instances dominate over fire instances. Usually, we can overcome 

this issue by using class weights or by generating synthetic data using Synthetic Minority Over-sampling 

Technique (SMOTE), however in our case the accuracy did not improve (Table 5). 

Table 5: Model accuracies. 

Model  Accuracy  Accuracy using weights  Accuracy using SMOTE  

Random Forest  0.769  0.782  0.798  

XGBoost  0.798  0.798  0.725  

SVM  0.788  0.796  0.498  

KNN  0.767  0.761  0.773  

MLP  0.788  0.796  0.510  

 

It is obvious that none of the models vastly improves, in contrary, when we use SMOTE Support Vector 

Classifier and Multi-Layer Perceptron display significant drop in their performance. We will select XGBoost as 

the model of choice, even though its accuracy with SMOTE is lower, its base performance is high, which 

suggests that it is less dependent on oversampling techniques. Furthermore, we apply transformations for 

periodic variables. 

 

Table 6: Final dataframe. 

LOC  

ATION  

TEMP 

(°C)  

REL. 

HUM.  

Year  DayOf

Month  

sin  

DayOf

Month  

cos  

DayOf

Week  

sin  

DayOf

Week  

cos  

Month  

sin  

Month  

cos  

FIRE  

1  0.4431

…  

0.71  2010  0.2012

…  

0.9795

…  

-

0.4338

8…  

-

0.9009

…  

0.4999

…  

0.8660

…  

0  

1  0.4668

…  

0.7  2010  0.3943

…  

0.9189

…  

-

0.9749

…  

-

0.2225

…  

0.4999

…  

0.8660

…  

0  

1  0.4075

…  

0.62  2010  0.5712

…  

0.8207

…  

-

0.7818

…  

0.6234

…  

0.4999

…  

0.8660

…  

0  

1  0.4028

…  

0.67  2010  0.7247

…  

0.6889

…  

0.0  1.0  0.4999

…  

0.8660

…  

0  
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1  0.3791

…  

0.59  2010  0.8486

…  

0.5289

…  

0.7818

…  

0.6234

…  

0.4999

…  

0.8660

…  

0  

 

After all the transformations we applied, we end up with the dataframe in Table 6 and the accuracy score we 

get is 0.8303, there is a significant raise in our accuracy. The next step is performing a hyperparameter 

optimizing of our model. 

 

2.6 Feature Importance in Fire Prediction Model 

While developing the ML model it was crucial to identify the variables which had significantly impacted our 

predictions. The following graph depicts the importance of each feature when using the final XGBoost model. 

 

 
Figure 8: Feature importance. 

The Temperature emerged apparently as the most significant variable, indicating that high temperatures 

correlate with increased fire occurrences. This finding aligns with common sense and the bibliography which 

claims that elevated temperatures enhance the flammability of fuel. Month transformations are highly 

significant as well, suggesting that certain seasons of the year have higher tendency for fires due to climatic 

conditions. Actually, Month_sin and Month_cos combined score is higher than Temperature’s score.  

The Year variable was important as well, highlighting long-term trends in fire risk, which could mean climate 

change or even changes of land usage. Similarly, the sine and cosine transformations of the Day of the week 

and Day of the Month affect our predictions, as they capture weekly and monthly patters in fire occurrences, 

presumably influenced by human activities such as outdoor activities in weekends. The Location variable and 

the rest below- Pressure, Relative Humidity, Wind Speed and Wind Direction were less significant. Their lower 

importance suggests that they might contribute noise to the model rather than enhancing its accuracy. 
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Consequently, these features can be even considered redundant as they introduce unnecessary complexity, 

increasing the dimensionality.  

The feature importance analysis underscores the complex interaction of meteorological, temporal and 

geographic factors in fire prediction. However, it emphasizes the need for careful consideration of which 

variables to include. Improved forecasting models can lead to more effective fire management strategies, 

which will ultimately reduce the destructive effects of wildfires. 

 

2.7 Challenges and Limitations 

The primary challenge was the limited data from AWSs in Cyprus. As seen in Figure 9, there are 53 AWSs, but 

data was only available from five stations. This limited data coverage posed significant challenges. Those five 

AWSs are located close to urban areas rather than forested areas, which are generally more prone to wildfires. 

Consequently, the model’s predictions are biased towards conditions that are common in urban settings. The 

absence of data from forested regions sets a limit to the model’s accuracy when predicting fire occurrences in 

high-risk regions. 

 
Figure 9: Automated weather stations in Cyprus. 

Another critical issue confronted was the inadequate quantity of features available for the model training. Key 

factors such as rainfall precipitation, and fuel content (DFMC and LFMC) unfortunately weren’t available. 

These variables are fundamental for an accurate fire prediction as they straightforwardly impact the likelihood 

of a fire. The absence of these decisive variables limited the model’s ability to capture environmental and 

meteorological conditions in which fire is about to burst. Overall, this resulted in a less comprehensive model.  

Last but not least, an extra challenge was the occurrence of deliberate, human-caused fires. It is intrinsically 

difficult to predict deliberate fires – mostly caused by arson, based solely on meteorological and 

environmental data. These incidents are not driven by natural factors; therefore they cannot be measured, 

neither forecasted. If we knew which fires were intentional, our model would be better at predicting naturally 

caused fires, however it would still not be able to predict arsons.  
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3. Fire Detection Module 

A key component of the fire system was selecting the appropriate sensors to ensure the system received the 

necessary data. Wind speed and direction are crucial factors in forest fire applications that aid in fire behaviour 

prediction, fire spread patterns, safety of firefighters and air quality and smoke management. Smoke sensors 

(CO2, Temperature and Humidity) aid in alerting authorities and communities, assessment of environmental 

impact, support for firefighting operations and monitoring fire progress. 

The use of CO2 sensor networks for early wildfire warning has been validated in multiple research studies, 

demonstrating their potential to significantly enhance fire detection capabilities [11], [12]. These sensors are 

capable of continuously monitoring atmospheric carbon dioxide levels, which can rapidly increase during the 

early stages of a wildfire due to the combustion of biomass. By deploying a network of such sensors across 

high-risk areas, researchers have shown that it is possible to detect fires more quickly than with traditional 

methods such as satellite imaging or lookout towers. Additionally, sensor networks offer the advantage of 

real-time, ground-level data collection, which enables faster emergency response and more precise 

localization of fire outbreaks. This approach not only improves situational awareness for firefighting efforts 

but also contributes to the broader goal of minimizing environmental damage and protecting communities at 

risk. 

Collaborating with the forestry department, we identified two locations that were blind spots relating to the 

surrounding lookout towers and installed a number of sensors to detect fire. The CO2 data is transmitted to 

the fire detection module which uses the fire prediction data with the CO2 values to determine if a fire has 

started near the sensor. When the fire risk prediction is high then a lower CO2 threshold will trigger an event 

otherwise a higher CO2 level would be required. This significantly improves our ability to detect fires early 

during high-risk conditions. 

 

3.1 Fire Module Composite Sensor Selection and Parameters  

This section details all composite sensors chosen for the Green-HIT project, these components play a pivotal 

role in enhancing the efficiency and effectiveness of forest management practices, offering tailored solutions 

for data retrieval, incident validation, and environmental monitoring, leveraging advanced technologies such 

as LoRaWAN and/or Satellite communication.  

Selection of market sensor was done based on requirements provided for the creation of the fire module. 

Wind speed and direction are crucial factors in forest fire applications that aid in fire behaviour prediction, fire 

spread patterns, safety of firefighters and air quality and smoke management. Smoke sensors (CO2, 

Temperature and Humidity) aid in alerting authorities and communities, assessment of environmental impact, 

support for firefighting operations and monitoring fire progress. Temperature and humidity are also measured 

on the weather station level. 
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The below tables list the parameters of the sensors selected for the installations. 

Table 7: Seeed SenseCAP S2120 8-in-1 weather station sensor parameters. 

Seeed SenseCAP S2120 8-in-1 Weather Station 

Temperature  Range -40°C to + 80°C Accuracy ±0.5 °C Resolution 0.1 °C 

Humidity Range 1 to 99 %RH Accuracy ±3% Resolution 1%RH 

Rainfall Range 0 to 450 mm/h Accuracy ±7% Resolution 0.254 

mm/h 

Pressure Range 540 to 1100hPa Accuracy ±5hPa Resolution 1hPa 

Wind Speed Range 0 to 50m/s Accuracy ±0.5m/s Resolution 0.1m/s 

Wind Direction Range 0 to 360° Accuracy ±8° Resolution 1° 

Light Intensity Range 0 to 200000lux Accuracy ±5% Resolution 1lux 

UV Index Range 0 to 16 Accuracy  ±10% Resolution 0.1 

 

Table 8: Smoke sensor parameters. 

CO2 Sensors 

 Milesight EM500 Smoke Sensor Seeed SenseCAP S2103 Smoke Sensor 

CO2 Range 400 - 5000 ppm 400 - 10000 ppm 

CO2 Accuracy ± (30 ppm + 3 % of reading) (0°C - 50°C, 0 

- 85%RH) 

±(30 ppm +3% of reading) (extended 

range ±10% of reading) 

CO2 Resolution 1 ppm 1 ppm 

Temperature Range -30°C to + 70°C -40°C to + 85°C 

Temperature Accuracy 0°C to + 70°C (+/- 0.3°C), -30°C to 0°C (+/- 

0.6°C) 

±0.2 °C 

Temperature Resolution 0.1° 0.01 °C 

Humidity Range 0% to 100% RH 0% to 100% RH 

Humidity Accuracy 10% to 90% RH (+/- 3%), below 10% and 

above 90% RH (+/- 5%) 

±1.8 %RH 

Humidity Resolution   0.5% RH 0.01% RH 

 

3.2 Sensor Installation  

Sensor installation was done in multiple locations in 2 areas in accordance with requirements. The areas are 

the Troodos forest and the Ayios Nikolaos areas. These were chosen based on prior research done by partners 

of the project to select high risk locations.  
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The installation of the sensors was done in cooperation with the Forest Department of Cyprus, the department 

identified locations in the area that had the following criteria regarding the fire module: 

§ Identified blind spots that are not observable from fire stations. 

§ High risk of fire breakout areas either identified from experience or previous incidents. 

The table below details the sensors installed and their quantities. 

Table 9: Hard installation locations and quantities. 

Hardware Location Quantity 

Milesight EM500 Smoke Sensor Troodos 40 

Seeed SenseCAP S2103 Smoke Sensor Ayios Nikolaos 50 

Seeed SenseCAP S2120 Weather Station Both 4 (2 each) 

 

CO2 sensors were installed in clusters in those locations to account for effective CO2 coverage, Weather 

Station were placed in central locations in the area to optimally cover it for atmospheric measurements, 

particularly wind speed and direction. 

 
Figure 10: Installed sensors (Weather Station left, EM500 centre, SenseCAP S2103 right). 
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4. Fire Propagation Module 

To simulate wildfire spread in real-world terrain, it is essential to continuously determine new geospatial 

coordinates from the location a Fire Starts and is Detected towards its general movement propagation. This 

module calculates the general location of movement of the next fire propagation point based on a given 

starting location’s coordinates, distance (ideal range and prediction distance of next movement location of 

fire - 150M), and directional bearing (typically aligned with wind direction sensed from closest weather 

station). The result can be used to extract topographic elevation data for slope and terrain analysis via external 

APIs that will be used to calculate the slope between the two points to further calculate slope factor, which 

will in turn be used as a crucial parameter to calculate the Rate of Spread of the identified Fire. 

 

4.1 Fire propagation algorithm 

The algorithm performs spherical trigonometric calculations to compute a new latitude and longitude from 

an initial geographic coordinate, accounting for Earth’s curvature. 

Given: 

§ Initial coordinates: Fire Sensor, sensing high levels of Co2 indicating Fire. 

§ Distance to propagate: 150 meters from starting location of Fire. 

§ Directional bearing: Degrees° of current wind (where North = 0°/360°, East = 90°, South = 180, West = 

270). 

The steps include: 

1. Convert Directional Bearing Degrees to Radians: 

Trigonometric functions in Python require angles in radians. 

2. Apply Great-Circle Navigation Formulae to Coordinates: 

Latitude change: Eq. (1). 

 
Longitude change: Eq. (2). 
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3. Where: 

o d is the distance in meters, 

o θ is the propagation angle in radians, 

o R is Earth's radius (approximated as 6,371,000 meters), 

o ϕ is the original latitude in radians. 

4. Convert Back to Directional Bearing Degrees: 

After calculating the deltas, the script converts them to degrees and adds them to the original 

coordinates to obtain the new calculated predicted fire front position. 

5. Elevation Query: 

The new coordinates are used to construct a URL for querying elevation data from the OpenTopodata 

API using the EUDEM 25m resolution dataset: 

https://api.opentopodata.org/v1/eudem25m?locations=LAT,LON 

 

This module allows fire spread simulations to move incrementally across geographic space, dynamically 

updating the fire’s location and fetching real-time elevation data. This enables terrain-aware spread 

modelling, crucial for predicting slope factor effect on fire behavior in mountainous or complex landscapes. 

 

4.2 Identifying Closest Weather Station to Fire Using the Haversine Formula 

Accurate distance measurement between geospatial coordinates is essential in fire monitoring systems, 

particularly when integrating data from distributed deployed weather stations, strategically scattered fire 

sensors, and IoT-based edge devices. In order to use the most appropriate live data from multiple weather 

stations distributed across the terrain, this script uses the Fires Starting Location and determines the closest 

weather station deployed, in order to identify the most appropriate wind speed, direction, barometric pressure 

of the weather conditions closest to the active Fire. To estimate the direct ground distance between such 

points on the Earth's surface, this module employs the Haversine formula, which accounts for the Earth's 

curvature. 

Description of the Algorithm: 

Given two points: 

§ Weather Station Coordinates: [Longitude] [Latitude] – List of all Weather Stations 

§ Live Fire Sensor Coordinates: [Longitude] [Latitude] – Triggered Sensor, Fire = 1 

The script follows these steps: 

1. Convert Coordinates to Radians: 

All latitude and longitude values are converted from degrees to radians for trigonometric operations. 

2. Compute Differences: Eq. (3). 
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3. Apply the Haversine Formula: Eq. (4). 

 
Where: 

o R=6371.0 km is the Earth’s radius, 

o c is the central angle between the points in radians. 

4. Output: The result is the great-circle distance in kilometers between the two points. 

 

This method is vital in: 

• Determining proximity between fire detections and local weather conditions, 

• Configuring sensor coverage areas, 

• Correlating environmental data with detected fire events for propagation modelling. 

By accurately measuring these distances, the model enhances both data fusion and spatial reasoning in fire 

monitoring systems. 

 

4.3 Terrain Slope Angle Calculation for Fire Spread Prediction 

Slope is a major contributing factor in wildfire behavior, influencing both the rate and direction of spread. Fires 

tend to move faster uphill due to preheating of fuels and slower downhill. This module calculates the slope 

angle between two geospatial points based on their elevation difference and horizontal separation, enabling 

integration with slope-based fire propagation models (e.g., Van Wagner’s correction). 

Description of the Algorithm: 

Given: 

• Elevation at Point 1 (Fire Origin) 

• Elevation at Point 2 (Predicted Fire Movement Point Calculated) 

• Horizontal Distance Between Points: 150 meters  

1. Compute Vertical Elevation Difference: Eq. (5). 
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2. Calculate Slope Angle (Radians): Eq. (6). 

 
3. Convert to Degrees: Eq. (7). 

 
4. Optional Conversion: The script reconverts the result from degrees back to radians 

(slope_angle_radians) to maintain compatibility with other modules that may require angle input in 

radians. 

 

This calculated slope angle feeds directly into the Van Wagner slope factor model, enabling a quantitative 

correction of the Rate of Spread (ROS). Accurate slope determination is essential for realistic simulation of fire 

behaviour over complex terrain, especially when paired with elevation datasets such as those retrieved via 

OpenTopodata. 

 

4.4 Fire Propagation – ROS (Rate of Spread) Calculation Modelling Module 

To estimate the dynamic spread of wildfire across varying terrain and environmental conditions, we 

implemented a Python-based calculation for Rate of Spread (ROS) adjustment. The script reflects the impact 

of two primary influencing factors – wind and slope – on a given baseline or "flat" ROS value. 

Description of the Algorithm: 

The function calculate_ros receives three parameters: 

flat_ros: The baseline rate of fire spread over flat terrain (measured in meters per minute), 

wind_factor: A dimensionless coefficient accounting for wind-driven acceleration of the fire front, 

Calcuclated @ INDEX 

slope_factor: A dimensionless coefficient representing how slope influences uphill or downhill fire spread. 

Calcuclated @ INDEX 

The adjusted ROS is calculated using the empirical formula: Eq. (8). 
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This formula linearly amplifies the base ROS by incorporating the combined effects of wind and slope, both of 

which are known to significantly increase fire propagation speed. 

• The flat ROS is hardcoded as 0.985 m/min, 

• Wind and slope factors are set computed and substituted in this formula from two other 

corresponding module – wind_Factor_Calculator and slope_Factor_Calculator_Positive_Negative 

respectively, 

• The output prints the adjusted ROS. 

Use in Simulation / Risk Assessment and Fire Propagation Module: 

This ROS model forms a fundamental component in wildfire simulation systems, helping to estimate how fast 

and in what direction a fire might propagate under specific conditions. The simplicity of the implementation 

allows it to be modularly extended or integrated with more complex geospatial fire models or real-time sensor 

data inputs in emergency response systems. 

 

4.5 Wind Factor Calculation for ROS Calculation Modelling Module 

Wind is a critical environmental variable influencing wildfire behaviour, significantly accelerating the rate and 

direction of fire spread. To quantify this influence, we implemented a wind factor calculation model based on 

an exponential response to wind speed. 

Description of the Algorithm: 

The calculate_wind_factor function estimates the wind contribution to fire propagation using the following 

formula: Eq. (9). 

 
Where: 

• V is the wind speed in meters per second (m/s), received from the nearest weather station deployed 

in the Cyprus forest (using H 

• k is an empirically chosen wind influence coefficient (default: 0.05), 

• e is Euler’s number (≈ 2.718). 

This exponential model reflects the nonlinear impact of increasing wind speeds on fire dynamics, where small 

increases in wind can lead to disproportionately larger increases in spread rate. 
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This factor is later used to scale the Rate of Spread (ROS) in the main propagation model, emphasizing how 

intensifying winds enhance wildfire mobility. 

Application Context: 

The wind factor function is modular and can be integrated with real-time meteorological data from weather 

stations, satellite feeds, or IoT sensors deployed in wildfire-prone regions. Adjustments to the coefficient k 

can be made to tailor the model to specific vegetation types or regional fire behaviour patterns, offering 

flexibility and calibration capabilities for different simulation scenarios. 

 

4.6 Slope Factor Calculation Using Van Wagner’s Equation for ROS Calculation Modelling Module 

Topographic slope plays a critical role in wildfire behaviour, influencing the speed and intensity of fire spread. 

Uphill slopes can accelerate fire movement due to preheating of fuels, while downhill slopes tend to have a 

dampening effect. To model this terrain-dependent behaviour, we adopted an approach based on Van 

Wagner’s 1988 fire behaviour equations, which are widely referenced in wildfire science. 

Description of the Algorithm: 

The function van_wagner_slope_factor computes a slope correction factor based on the angle of inclination 

or declination of terrain. The model is segmented into two distinct regimes: 

1. Negative Slopes (Declining Terrain: -45° to 0°): 

Fire slows down on downhill slopes due to reduced radiant and convective heat reaching the unburned fuel. 

However, the slowdown isn't linear or guaranteed. Specifically, for slopes steeper than -22° (i.e… steeper 

downhill), the fire may still maintain momentum due to: 

• Falling burning debris, such as rolling logs or flaming pinecones, which can ignite fuels downslope. 

• Wind effects and chimneying in valleys, which may counteract the downward slope effect. 

In Van Wagner’s model, slope factors for downhill angles greater than -22° return close to 1.0, meaning the 

fire behaves nearly as if it were on flat terrain — a realistic representation of how downhill fires can still be 

aggressive, especially in forested regions. 

For mild negative slopes (≥ -22°), a quadratic reduction is applied: Eq. (10). 

 
This represents a gradual decrease in the effective ROS as terrain slopes downward. 

For steeper declines (< -22°), the slope factor resets to unity [1.0], suggesting no further suppression of 

ROS. 

2. Positive Slopes (Inclining Terrain: 0° to 31°): 
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Wildfires tend to propagate faster uphill because flames and convective heat rise, preheating the 

unburned fuel located upslope. This preheating effect dries and ignites vegetation more quickly, leading 

to exponential increases in the Rate of Spread (ROS) as slope increases. This phenomenon becomes more 

pronounced as the slope angle steepens, particularly between 0° and 31°. 

For positive slopes, Van Wagner’s empirical exponential formula is used: Eq. (11). 

 
where θ is the slope angle in radians. This reflects the accelerating effect of uphill slopes on fire spread, 

increasing rapidly with steepness. 

The function includes input validation to ensure the slope angle remains within the domain supported by 

Van Wagner's model: -45° to 31°. 

Application Context: 

This slope correction factor is used to modify the base ROS in the fire propagation model. When combined 

with wind and vegetation models, this allows for a comprehensive simulation of wildfire dynamics over real-

world terrain. The modular design of the function allows integration into GIS-based fire modelling systems or 

real-time emergency response tools. 
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